

§1) Semi-Riemannian Mflds

Defn: (Semi-Riemann. mfld)

A semi-Riemannian mfld (M, g) consists of:

- 1) M , a smooth n -dim mfld
- 2) Tensor field, g s.t. $\forall a \in M$ it assigns a non-deg. & symm. bilinear form on $T_a M$:

$$g_a : T_a M \times T_a M \rightarrow \mathbb{R}$$

Example:

- 1) $\mathbb{R}^{p,q} = (\mathbb{R}^{p+q}, g^{p,q})$ for $p, q \in \mathbb{N}$ s.t.

$$g^{p,q}(X, Y) := \sum_{i=1}^p X^i Y^i - \sum_{i=p+1}^q X^i Y^i$$

$T_a \mathbb{R}^{p,q}$

$$\text{(or)} \quad \begin{pmatrix} g_{11} & \\ & g_{22} \end{pmatrix} = \begin{pmatrix} 1_I_p & 0 \\ 0 & -1_I_{p+q} \end{pmatrix}$$

- 2) $\mathbb{R}^{1,3}$ or $\mathbb{R}^{3,1}$ Minkowski space

§2) Conformal Transformations

Defn: (Conformal transformation)

(M, g) and (M', g') be two semi-Riemannian mflds of dim n , $U \subset M$, $V \subset M'$ open sets. A smooth map $\varphi: U \rightarrow V$ of

maximal rank is called a conformal transformation if

\exists a smooth fn. $\Omega: V \rightarrow \mathbb{R}_+$ s.t.

$$\varphi^* g' = \Omega^2 g$$

$$\varphi^* g'(X, Y) = g'(T\varphi(X), T\varphi(Y)) \text{ where } T\varphi: TU \rightarrow TV$$

denotes the tangent map of φ (derivative)

The smooth fn Ω is called conformal factor of φ

Remarks:

1) In local coordinates of M & M' , φ is conformal iff:

$$(g'_{ij} \circ \varphi) \partial_{\varphi}^i \varphi^j \partial_{\varphi}^j g_{ij} = \Omega^2 g_{ij}$$

2) The maps $T_a \varphi: T_a M \rightarrow T_{\varphi(a)} M'$ are bijective $\forall a \in M$ if φ is conformal. Then inverse mapping thm \Rightarrow φ is a local diffeomorphism.

Examples:

1) Local isometries (or) smooth maps φ with $\varphi^* g' = g$ are trivial conformal transformations with $\Omega = 1$

2) A smooth map $\varphi: \overset{\circ}{M} \rightarrow \mathbb{C}$ (where M is a connected open subset of \mathbb{C}) is conformal with $\Omega: M \rightarrow \mathbb{R}_+$ if Ω only if

$$u_x^2 + v_x^2 = \Omega^2 = u_y^2 + v_y^2 \neq 0 \quad \begin{cases} u = \operatorname{Re} \varphi; u_x \text{ derivative} \\ v = \operatorname{im} \varphi \text{ wrt } z \\ \text{etc} \end{cases}$$

$$\bullet \quad u_x v_y + v_x v_y = 0$$

But Holomorphic & antiholomorphic functions (which satisfy Cauchy-Riemann equations $u_x = v_y, u_y = -v_x$ (or) "anti"-Cauchy-Riemann eqns $u_x = -v_y, u_y = v_x$) from $M \rightarrow \mathbb{C}$ with $u_x^2 + v_x^2 \neq 0$ satisfy the above two conditions. For holomorphic (or) antiholomorphic functions $u_x^2 + v_x^2 \neq 0 \Leftrightarrow \det D\varphi \neq 0$

$D\varphi$ = Jacobi matrix of $T\varphi$

Overall,

$$(\text{Conf. transf. } \varphi : M \rightarrow \mathbb{C}) \Leftarrow \left(\begin{array}{l} \text{locally invertible} \\ \text{holomorphic / antiholomorphic} \\ \text{functions} \end{array} \right)$$

\Rightarrow direction is also true:

For a general conf. tran. $\varphi = (u, v)$, the above two conditions imply (u_x, v_x) and (u_y, v_y) are "perpendicular" vectors in $\mathbb{R}^{2,0}$ of length $\Omega^2 \neq 0$ ie)

$$(u_x, v_x) = (-v_y, u_y) \text{ (or) } (u_x, v_x) = (v_y, -u_y)$$

meaning φ is holomorphic / anti-holomorphic with $\det D\varphi \neq 0$

$$\text{So, } (\text{Conf. transf. } \varphi : M \rightarrow \mathbb{C}) \Leftrightarrow \left(\begin{array}{l} \text{locally invertible} \\ \text{holomorphic / antiholomorphic} \\ \text{functions} \end{array} \right)$$

3) In what sense, conformal transformations "preserve angles"?

$\mathbb{C} \cong \mathbb{R}^{2,0}$, a linear map $\varphi: \mathbb{R}^{2,0} \rightarrow \mathbb{R}^{2,0}$ with matrix rep.

$$A_\varphi = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad (\text{Jacobian of } \varphi)$$

is conformal if & only if (following in close analogy to 2) above) $(a^2 + c^2 \neq 0, a=d, b=-c)$ (or) $(a^2 + c^2 \neq 0, a=-d, b=c)$. Substituting these conditions in A_φ and making it act on a complex no. $z = x+iy$, one can observe the φ acts in the following form(s):

$$z \mapsto \bar{z}z \quad (\text{or}) \quad z \mapsto \bar{z}\bar{z} \quad \text{where } \bar{z} = a+icf_0$$

Then, $\omega(z, w) := \frac{\bar{z}\bar{w}}{|zw|}$ determines "angle" between z and w

up to orientation. So in our case, it follows by direct calculation that:

$$\omega(\varphi(z), \varphi(w)) = \frac{\bar{z}\bar{z} \bar{z}\bar{w}}{|\bar{z}\bar{z} \bar{z}\bar{w}|} = \frac{\bar{z}\bar{w}}{|\bar{z}w|} = \omega(z, w)$$

$\varphi: \mathbb{R}^{2,0} \xrightarrow{\quad} \mathbb{R}^{2,0}$

$$z \mapsto \bar{z}z$$

(or) when $\varphi: z \mapsto \bar{z}\bar{z}$, one can show the same thing holds.

Conversely: linear maps φ with $\omega(\varphi(z), \varphi(w)) = \omega(z, w)$ $\forall z, w \in \mathbb{C} \setminus \{0\}$

$$(or) \quad \omega(\varphi(z), \varphi(w)) = -\omega(z, w) \quad \forall z, w \in \mathbb{C} \setminus \{0\}$$

are conformal transformations.

Overall, \mathbb{R} -linear maps $\varphi: \mathbb{R}^{2,0} \rightarrow \mathbb{R}^{2,0}$ are

(Conformal) \iff (Angle preserving in the above sense)

§3) Conformal Killing Fields

Goal: Study conformal maps $\varphi: M \rightarrow M'$ where $M, M' \subset \mathbb{R}^{p,q}$ with $p+q =: n > 1$

Defn (Local flow & (real one parameter group))

X is any C^∞ -vector field on a chart U & $p \in U$, then there are neighborhood W of $p \in U$, an $\varepsilon > 0$ and a C^∞ map

$$\varphi^X: (-\varepsilon, \varepsilon) \times W \rightarrow U$$

s.t. for each $a \in W$, the fn $\varphi^X(t, a)$ is an integral curve of X starting at a . i.e) $\varphi^X(0, a) = a$ and it also satisfies the following "group-like" behaviour

$$\varphi_t^X(\varphi_s^X(a)) = \varphi_{t+s}^X(a) \quad (\text{wherever they are defined})$$

φ^X is called local flow generated by a vector field, X

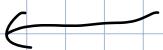
Why do we need local flow?

Because,

$$\varphi^X(0, a) = a \quad \text{and} \quad \frac{\partial \varphi^X}{\partial t}(t, a) = X_{\varphi^X(t, a)}$$

$\forall a \in \text{WCU}$

φ^X satisfies the "flow equation"



At $t=0$,

$$\frac{\partial \varphi^X(0, a)}{\partial t} = X_{\varphi^X(0, a)} = X_a$$

$\underbrace{\varphi^X(0, a)}_{=a}$

i.e.) One can recover the whole vector field from its local flows. Denote $\varphi(t, \cdot)$ as $\varphi_t(\cdot)$, then,

$\{\varphi_t^X\}_{t \in \mathbb{R}}$ is called the local one-parameter

group of X

Defn: (Conformal Killing field)

A vector field X on $M \subset \mathbb{R}^{p, q}$ is called conformal if φ_t^X is conformal for all t in the neighbourhood of 0.

Thm: *)

Let $M \subset \mathbb{R}^{p, q}$ and $g = g^{p, q}$ (for Minkowski) and X be a conformal field. Then $X = (X^1, \dots, X^n) = X^i \partial_i$

wrt canonical coord. of \mathbb{R}^n . Then \exists a smooth fn.

$\kappa: M \rightarrow \mathbb{R}$ s.t.

$$\underbrace{\partial_2 X_\varepsilon}_{} + \partial_\varepsilon X_2 = \kappa g_{\varepsilon 2}$$

where

$$\partial_2 X_\varepsilon = \partial_2 g_{\varepsilon 2} X^0$$

Proof:

X is conformal killing field. $(\varphi_t)_{t \in \mathbb{R}}$, $\mathcal{L}_t: M_t \rightarrow \mathbb{R}^+$
s.t.

$$(\varphi_t^* g)_{\varepsilon 2}(a) = g_{ij}(\varphi_t(a)) \partial_\varepsilon^i \varphi_t^j \partial_2 \varphi_t^j = (\mathcal{L}_t(a))^2 g_{\varepsilon 2}(a)$$

constant: we're in $\mathbb{R}^{p,q}$

Differentiate wrt t on both sides and restrict to $|_{t=0}$:

$$g_{ij} \partial_\varepsilon \dot{\varphi}_0^i(a) \underbrace{\partial_2 \dot{\varphi}_0^j(a)}_{= \delta_{22}^j} + g_{ij} \partial_\varepsilon \varphi_0^i(a) \partial_2 \dot{\varphi}_0^j(a) = \frac{d}{dt} \left((\mathcal{L}_t(a))^2 \right) \Big|_{t=0} g_{\varepsilon 2}(a)$$

Recall φ_0 is identity ($\because \varphi$ is a flow of X)

So, Jacobian of identity is just Kronecker
delta coordinate-wise

$$\Rightarrow g_{ij} \partial_\varepsilon X^i(a) \delta_{22}^j + g_{ij} \sum_\varepsilon^i \partial_2 X^j(a) = \frac{d}{dt} \left((\mathcal{L}_t(a))^2 \right) \Big|_{t=0} g_{\varepsilon 2}(a)$$

$$i) \partial_{\bar{z}} X_{z\bar{z}} + \partial_{z\bar{z}} X_{\bar{z}} = \left. \frac{d}{dt} \left((\Omega_t(a))^2 \right) \right|_{t=0} g_{z\bar{z}}(a)$$

$\underbrace{\phantom{\left. \frac{d}{dt} \left((\Omega_t(a))^2 \right) \right|_{t=0}}}_{= \kappa(a)}$
 "infinitesimal"
 conformal tran.

The above statement motivates the following definition:

Defn: (Conformal Killing factor)

Let $\kappa: M \rightarrow \mathbb{R}$ be a smooth function. κ is called
 a conformal killing factor if there exists a conformal
 killing field X s.t.

$$\partial_{\bar{z}} X_{z\bar{z}} + \partial_{z\bar{z}} X_{\bar{z}} = \kappa g_{z\bar{z}}$$

$$\text{where } X_{z\bar{z}} = g_{z\bar{z}} X^{\bar{z}}$$

Theorem:

$(\kappa: M \rightarrow \mathbb{R} \text{ is a conformal killing factor})$

$$(n-2) \partial_{\bar{z}} \partial_{z\bar{z}} \kappa + g_{z\bar{z}} \underbrace{g^{k\bar{l}} \partial_k \partial_{\bar{l}} \kappa}_{!! \Delta g} = 0$$

Proof:

Proof uses index pymanoh's which is not too interesting to see.

(Thm-1.6 in main reference [S] pages 14, 15)
 \Leftarrow -Direction follows in §4) below

Remarks:

$$(K \text{ is a conformal Killing factor}) \Leftrightarrow (n-2) \partial_\varepsilon \partial_\nu K + g_{\varepsilon\nu} \underbrace{g^{kl} \partial_k \partial_l K}_{\Delta g} = 0$$

For $n=2$, this means

$$\Leftrightarrow \Delta g K = 0$$

For $n > 2$, K is a (conf. Killing factor) \Leftrightarrow :

- For $\varepsilon \neq \nu$, $\partial_\varepsilon \partial_\nu K = 0$
- For $\varepsilon = \nu$, $(n-2) \partial_\varepsilon^2 K + \underbrace{g_{\varepsilon\varepsilon} \Delta g}_{\stackrel{+1}{\text{or}}} K = 0$
 $(\text{or}) \quad \partial_\varepsilon^2 K = \frac{\pm 1}{(n-2)} \Delta g K$

§4) Classification of (conf. transf.)

Conf. transf. of connected open sets of $M \subset \mathbb{R}^{p+q}$

Case-1 $p+q =: n > 2$

conf. Kill factor $\Rightarrow (n-2) \partial_\varepsilon \partial_\nu K + g_{\varepsilon\nu} \Delta g K = 0$

For $g=2$:

$$(n-2) g_{\alpha\beta} \partial_\alpha \partial_\beta \kappa + \Delta_g \kappa = 0$$

\sum on both sides,

$$(n-2) \Delta_g \kappa + \Delta_g \kappa = 0$$

(or) $\Delta_g \kappa = 0$. Substitute this back in to get:

$$\partial_\alpha^2 \kappa = 0 \Rightarrow \partial_\alpha \kappa (q^1, \dots, q^n) = \underset{\substack{\uparrow \\ \text{const.}}}{\alpha_\alpha} \quad \alpha = 1, \dots, n$$

$$\kappa(q) = \bar{\kappa} + \alpha_2 q^2 \quad q = (q^2) \in \mathbb{M} \subset \mathbb{R} \\ (\bar{\kappa}, \alpha_2 \in \mathbb{R})$$

• Case-1a) $\kappa = 0 \rightarrow$ exponentiating $\Omega = 1$ aka local isometries

$$\text{So, } \partial_\alpha X_\alpha + \partial_\alpha X_\alpha = 0$$

$$\text{Similarly, } \partial_\nu X_\nu + \partial_\nu X_\nu = 0$$

$$\Rightarrow X^\alpha(q) = c^\alpha + \omega_2^\alpha q^2 \quad \text{where,} \\ c^\alpha, \omega_2^\alpha \in \mathbb{R}$$

• If ω_2^α vanish: $X^\alpha(q) = c^\alpha$

$\rightsquigarrow \dot{q} = c$ Solve

$\Rightarrow \varphi^x(t, q) = q + tc$ is the (global one-parameter group)

Associated conformal trans. $\rightsquigarrow \varphi^x(q) = q + c \rightarrow$ Translation!
($t=1$)

- If $c=0$, $\omega = (\omega_{ij})$ then

$$X_{q,v} + X_{v,q} = g_{qv}^{-1} = 0$$

leads to

$$g_{23} \overset{s}{\omega}_1 + g_{32} \overset{s}{\omega}_2 = 0$$

- (i) $\omega^T g + g \omega = 0$ (ii) elements of $O(p, q) = \{ \omega \mid \omega^T g + g \omega = 0 \}$

↓

Global one parameter flow: $\varphi^x(t, q) = e^{t\omega} q$

?

For $t=1$, $\varphi(q) = e^{\omega} q$ being the associated conformal trans.

(i) $\varphi: \mathbb{R}^{p,q} \rightarrow \mathbb{R}^{p,q}$

$(q \in \mathbb{R}^n)$ $q \mapsto \varphi q$ where

$$\Lambda \in O(p, q) = \{ \Lambda \in \mathbb{R}^{n \times n} \mid \Lambda^T g^{p,q} \Lambda = g^{p,q} \}$$

$$\rightsquigarrow \text{(i)} \quad \langle \lambda x, \lambda x' \rangle = \langle x, x' \rangle$$

Case-1 b): $\gamma = \lambda \in \mathbb{R} \setminus \{0\}$ const.

$$\downarrow$$

$$X(q) = \lambda q$$

$$\downarrow$$

Associated conf. $\varphi(q) = e^{\lambda q}$, $q \in \mathbb{R}^n$ Dilation.
fram.

Case-1 c) $\gamma \neq 0$

$$k(q) = \lambda + \alpha_2 q^2 \quad \text{If } \lambda = 0, \text{ then,}$$

Parametrize as: $\tilde{X}(q) = \lambda \langle q, b \rangle \quad q \in \mathbb{R}^n, b \in \mathbb{R}^n \setminus \{0\}$

$$\downarrow$$

(Has no global one-parameter group) $\tilde{X}'(q) := 2\langle q, b \rangle q^2 - \langle q, q \rangle b^2 \quad (q \in \mathbb{R}^n, b \in \mathbb{R}^n \setminus \{0\})$
is the soln. of $\partial_2 X_q + \partial_q X_2 = f g_{q2}$

Thus proving " \Leftarrow " direction of Thm*) in pg 6/7 of these notes.

So, for every conformal Killing field X with conformal killing factor $\gamma(q) = \lambda + \alpha_2 q^2 = \lambda + 4\langle q, b \rangle$, we can

define a vector field $Y(q) = X(q) - 2\langle q, b \rangle q + \langle q, q \rangle b - \lambda q$
 which is a conf. Killing field with conformal Killing factor $\xi = 0$.

$$\Rightarrow Y(q) = c + \omega q \quad \text{by (case-i) discussion above.}$$

ie) We proved:

Thm:

Every conformal Killing field X on a connected open subset M of \mathbb{R}^{p+q} (for $p+q =: n > 2$) is of the form:

$$X(q) = 2\langle q, b \rangle q - \langle q, q \rangle b + \lambda q + c + \omega q$$

for suitable $b, c \in \mathbb{R}^n$, $\lambda \in \mathbb{R}$, $\omega \in \mathcal{O}(p, q)$

The conformal killing field

$$X(q) = 2\langle q, b \rangle q - \langle q, q \rangle b, \quad b \neq 0, \quad q \in \mathbb{R}^n$$

we described above has NO global one-parameter group of solutions for $\dot{q} = X(q)$. Its solutions form the local one parameter group

$$\varphi_t(q) = \frac{q - \langle q, q \rangle tb}{1 - 2\langle q, tb \rangle + \langle q, q \rangle \langle tb, tb \rangle}, \quad t \in (t_q^-, t_q^+)$$

where (t_q^-, t_q^+) is the maximal interval around 0 contained in

$$\{q \in \mathbb{R}^n \mid 1 - 2\langle q, tb \rangle + \langle q, q \rangle \langle tb, tb \rangle \neq 0\}$$

So, the associated conformal transformation ($t=1$) is:

$$\varphi(q) = \frac{q - \langle q, q \rangle b}{1 - 2\langle b, q \rangle + \langle q, q \rangle \langle b, b \rangle}$$

which are called special conformal transformations.

Summary:

Every conformal transf. $\varphi: M \rightarrow \mathbb{R}^{p,q}$ for $p+q > 2$, (M being a connected open subset of $\mathbb{R}^{p,q}$) is a composition of the following four types of maps

- 1) a translation, $q \mapsto q + c$, $c \in \mathbb{R}^n$
- 2) an orthogonal transformation, $q \mapsto \Lambda q$, $\Lambda \in O(p,q)$
- 3) a dilation, $q \mapsto \lambda q$, $\lambda \in \mathbb{R}$
- 4) a special conformal transformation

$$q \mapsto \frac{q - \langle q, q \rangle b}{1 - 2\langle q, b \rangle + \langle q, q \rangle \langle b, b \rangle}, b \in \mathbb{R}^n.$$

Case-2): Euclidean plane $p=2, q=0$

Already discussed in Example-2 of examples of conformal transformations ie) Stated again:

Case 3): Minkowski plane ($p=q=1$)

Thm: A smooth map $\varphi = (u, v) : M \rightarrow \mathbb{R}^{1,1}$ on a connected open subset of $M \subset \mathbb{R}^{1,1}$ is conformal if & only if:

$$u_x^2 > v_x^2 \quad \text{and} \quad (u_x = v_y, u_y = v_x)$$

(or)

$$(u_x = -v_y, u_y = -v_x)$$

Corollary: The orientation-preserving linear & conformal maps $\Psi : \mathbb{R}^{1,1} \rightarrow \mathbb{R}^{1,1}$ have matrix representations of the form

$$A = A_\Psi = \exp t \begin{pmatrix} \cosh(s) & \sinh(s) \\ \sinh(s) & \cosh(s) \end{pmatrix}$$

(or)

$$= \exp t \begin{pmatrix} -\cosh(s) & \sinh(s) \\ \sinh(s) & -\cosh(s) \end{pmatrix}$$

with $(s, t) \in \mathbb{R}^2$.

Interpret t = dilation & s boost similar to Euclidean case
Seen above.